If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18k^2+45k-63=0
a = 18; b = 45; c = -63;
Δ = b2-4ac
Δ = 452-4·18·(-63)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-81}{2*18}=\frac{-126}{36} =-3+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+81}{2*18}=\frac{36}{36} =1 $
| 0=23w-w^2-132 | | -11=-1/6x-3 | | 18-3f=9 | | x+-12=30 | | 15(x+8)+15-14x=-4 | | 56=8(f-925) | | 12z^2+66z+30=0 | | 3(2x+1)=9(x+3) | | 3(x+4)=8(x+1) | | f/20+710=736 | | 4u^2+38u+18=0 | | 7m-18=1m | | 3n+6−2n=+4 | | 8(x-4)-3(x-4)=5(x-4)+x | | 1/3d-14=-5 | | 3x+-9=45 | | 2k^2+26k+24=0 | | n+21=0 | | 17-x=13∙15+6 | | 10v-8v=20 | | 3(-×+2)=4(2x-1) | | 3y-113=11 | | 8q-3q=10 | | -8c-5=-21 | | (5x+35)=85 | | -5m+8=83 | | 4(1+8k)=124 | | -4(5w-9)=6(8-4w) | | 7x-24=5x+14 | | (5.3x+2)+(12.7x-2)=180 | | 7(2-3x)=-3x-22 | | 12x-6x+180=12x96 |